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suMM!mY

Results of rapid-heating tests of Inconel X sheet are presented for
nominal temperature rates of 0.2° F to 100° F per second under constant
tensile load conditions. Yield and rupture stresses obtained under
rapid-heating conditions are compared with the results of conventional
tensile stress-strain tests at elevated temperatures. A msrked increase
in strength is observed with increased temperature rates. A temperature-
rate paraneter was used to construct master curves from which stresses
and temperatures for yield and rupture can be predicted under rapid-
heating conditions.

INTRODUCTION

Aerodynamic heating of aircraft and missiles has led to consider-
able research on the strength of materials at elevated temperatures.
Recent investigations have shown that materials exhibit greater tensile
strength when heated at rapid temperature rates than when tested under
conventional constant-temperature test conditions. A number of reports
on the effects of rapid heating of mterials at high temperature rates
have been published (for example, ref. 1). At the Langley Aeronautical
Laboratory, tensile properties under rapid-heating conditions have been
determined for several sheet materials - 7075-T6 and 2024-T3 aluminum
alloys, Inconel, FS-120 titaniw alloy, and ~lXA-H24 and AZ31A-O mag-
nesium alloys (refs. 2 to 5).

The present paper gives the results of rapid-heating tests of
Inconel X sheet heated to failure at nomina1 temperature rates of 0.2° F
to 100° F per second under constant tensile load conditions. These
results are compared with conventional tensile stress-strain data at
constant elevated temperatures. A temperature-rate parameter for the

* prediction of yield and rupture temperatures is investigated.
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MATERIAL AND SPECIMENS

The test specimens (fig. 1) were made from a single, annealed,
0.05-inch-thick sheet of Inconel X. The nominal chemical composition
for the alloy (ref. 6) and the actual composition sre given in table I.
AIJ_specimens were cut with their longitudinal axes parallel to the
rolling direction of the sheet. After being machined, the specimens
were heat-treated for 1 hour at 1,400° F and then air cooled.

—

TEST PROCEDURE

Stress-Strain Tests

Conventional tensile stress-strain tests were performed at room
and elevated temperatures to determine the change in Young’s modulus

—

with temperature and to compare yield and ultimate stresses with the
.—

results obtained from rapid-heating tests. The equipment and procedure
were essentially the same as those described in reference 7. The speci- ‘-
mens were exposed to the test temperature for 1/2 hour and then loaded
to failure at a strain rate of 0.002 per minute. The stress-strain

i

curve and a strain-time curve for each test were recorded simultane-
ously on an autographic recorder. The strain-time curve was used to w
control the strain rate during the test. The te~erature during the
exposure period was held within flOO F of the desired test temperature.
During the test, temperatures were held within *5° F of the desired
value. The yield stresses were determined with an accuracy of within
W percent and the ultimate stresses, within *0.5 percent. In addition,
three tests were performed with Tuckerman optical strain gages to estab-
lish Young’s modulus at room temperature more accurately.

Rapid-Heating Tests

The equipment and procedure for rapid-heating tests were essentially
the same as those described in references 2 and 3. The specimens were
loaded at room temperature to the desired stress,level by a dead-weight
loading system and were then heated to failure at a constant temperature
rate. Arbitrarily chosen stress levels of 20, 40, 60, and 80 ksi were
used. Heating was achieved by passing an electric current directly
through the specimen. Strains were measured over a l-inch gage length
by two differential transformer gages connec__tedto the specimen through
lever arms and gage frames. The thermocouples were spotwelded to the
specimen with a commercial controlled-condenser-dischargespotwelder
designed for that purpose. In rapid-heatingtests the aocuracy of strain
measurements was within *2 percent and the accuracy of the temperature b
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measurements was within t5° F. The thermal expansion characteristics
were determined from rapid-heating tests at a stress of 0.4 ksi..

RESULTS AND DISCUSSION

Stress-Strain Tests

The results of stress-strain tests are given in table II and are
illustrated in figures 2 to 4. Typical stress-strain curves for var-
ious test temperatures are shown in figure 2. The 0.2-percent-offset
yield stresses are indicatedby a tick mark on each curve. The varia-
tion of the yield and ultimate stresses with temperature is shown in
figure 3, and the variation of Young’s modulus with temperature is
shown in figure 4. The dashed portion of the curve in figure 4 is
extrapolated; it agrees closely with the values given in reference 8.

Rapid-Heating Tests

The results of the rapid-heating tests of the material are given
in table 111 and are illustrated in figures 5 to 8. The thermal-expansion ‘-
curve is illustrated in figure 5 and the average coefficients of thermal
expansion determined from that curve are listed in table ~.

The strain-temperature histories at four stress.levels for tempera-
ture rates frcm 0.2° F to 93° F per second are shown in figure 5. The
families of curves for each stress level are spaced for ease of reading.
These curves represent total strains which include thermal, elastic, and
plastic stratis. Until plastic deformation occurs, the experimental
curves coincide with the curves representing the sw of the calculated
thermal and ehstic strain. The ehstic strains were calculated by use
of the Young’s modulus curve given in figure 4. Yield temperatures,
which are defined as temperatures at which a plastic strain of 0:2 per-
cent occurs, are determined at an offset of 0.2 percent from the calcu-
lated strain curve, as indicated by the tick ~rks.

In figure 6, yield and rupture temperatures are plotted against the
temperature rate on a logarithmic scale. The experimental curves for
each stress level are represented by the solid lines. Both yield and
rupture temperatures increase with the temperature rate. The relation-
ship between yield temperatures and the logsritlnnof the temperature
rate is linesr at each stress level for the whole range of temperature

t rates used. For rupture, this relationship is linear up to about 20° F
per second.
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The rapid-heating and tensile stress-strain test results are com-
pared in figures 7 and 8. The solid curves representing the rapid- .,
heating test results for four temperature rates were cross-plotted from
the experimental curves in figure 6. The stress-strain results repre-
sented by the dashed lines are from figure 3. For temperature rates of
0.2° F per second and less, the yield and rujture stresses from rapid-
heating tests are lower than the yield and ultimate stresses frcxnstress-
strain tests. For temperature rates from about 2° F per second upwardj
the yield and rupture stresses from rapid-hating tests are higher than
the yield and ultimate stresses from stress-strain tests. As the tem-
perature rate increases, this difference becomes very large. The effect
of temperature rate on the stress for yield and rupture at a given tem-
perature is appreciable. For example, at 1,6~0 F, the rapid-heating
yield stress at 100° F per second is 2.5 ttis higher than the corre-
sponding stress for a temperature rate of 0:20 F per second. similarly,
at the same temperature, the rupture stress-for 100° F per second is
slightly more than twice the stress for 0.2° F per second.

Master curves for the prediction of temperatures or stresses at
yield and rupture (figs. 9 and 10) were obtained by means of linear
temperature-rate parameters according to the_method described in refer-
ence 2. The parameter for the yield temperature is

‘Y -
2600

(1)
logh-15

and for the rupture temperature

Tr - 100
(2)

log h + 20

in which Ty is the yield temperature in %?; Tr the rupture tempera-
ture, in %; and h the temperature rate, ~n % per second. The ~ee-
ment between predicted and actual yield and rupture temperatures is
illustrated in figure 6, where the solid lines represent the e~erimental
results and the dashed lines, the values predicted by using the master
curves. The experimental and the predicted-yield temperatures agree very
closely; for rupture the agreement is also good except at about 100° F
per second.

CONCLUSIONS

The following conclusions are based on the results of rapid-heating
and conventional tensile stress-strain tests of Inconel X sheet.
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1. Tensile rapid-heating tests indicate that at each stress level
the yield and rupture teqpera.turesincrease considerably with the tem-
perature rate. The yield temperatures vary linearly with the logarithm
of the temperature rate for all rates tested. The variation of the
rupture temperature with the logarithm of the temperature rate is linear
up to about 20° F per second.

2. At a given temperature, the inu=se b yieldand ~N~e stress
with temperature rate is appreciable. Depending on the temperature rate
used, the yield and rupture stresses obtained from rapid-heating tests
can be higher or lower than the yield and ultimate stresses obtained
from stress-strain tests.

3. Yield and rupture temperatures or the corresponding stresses can
be predictedby means of master curves and temperature-rate parameters
for the range of temperature rates investigated.

Langley Aeronautical Laboratory,
National Advisory Comnittee for Aeronautics,

Lsmgley Field,.Va., my 6, 1957.
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TABLE I

CHEMICALCOMPC61TIONCIFmcom x

[All values in percen~

Nominal Actual
Element Composition composition

(a) (b)

Nickel 7;4mii~ 72.77
chromium 14.98
Iron 5 tog 6.82
Titanium 2.25 tO 2.75 2.43
Columbimn
(and Tantalum) .7 to 1.2 .*

Aluminum .4 to 1.0 .76
Silicon .~ nwximum .37
Manganese .3 to 1.0 :2
Copper .2 maxh.lum
Carbon .08 maximum
sulfur .01 maximum %

a~om reference 6.

bSupplied by the manufacturer.
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TARLE 11 .

TENSILE STRESS-STRAIN PROPERTIES CE’INCONEL X SHEET Al?TERl/2-HOUR

TEMPERATURE EXFOSURE AND FOR A STRAIN RATE OF 0.002 PER MINUTE

Test Yield Ultimate Young‘s Elongation
temperature, stress, stress,

??
modulus, in 2 inches,

ksi ksi psi percent

Room temperature 107.0 166.0 31.4 x 106 34
Room temperature 106.3 166.0 30.8 33
Room temperature* 107.0 166.0 30.8
Room temperature* 106.5 166.2 30.7 z
Room temperature* lo~.3 164.5 30.7

99.4 156.8 30.8 ;;
k: 94.4 145.2 28.7 30
800 96.2 143.6 27.8 36
800 91.6 140.8 29.9 **36

1,000 96.6 I_28.o ---------- 16
1,000 98.8 131.0 24.9 13
1,000 97.4 133.0 25.3 16
1,000 95.7 u8.3 25.4 14
1,200 92.9 103.0 23.6 4
1,200 94.5 104.0 23.4
1,200 98.4 106.1 25.0 z
1,300 92.9 94.5 22.6 3
1,400 76.5 76.5 ---------- 2
1,400 76.0 76.9 ---------- 2
1,400 78.9 78.9 21.9
l,~oo 60.0 60.0 21.2 f
1,6(x) 39.4 39.7 .--------- 8
I,610 37*5 37.5 ----------

1,740 8.1 8.1 ---------- 6;
1,800 ----- 10.3 ---------- *+$64

*
Tuckerman strain gages.

‘Broke outside gage length.

—

r
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TABLE III

TENS13iEPROPERTIES OF INCONEL X SHEET’UNDER RAPID-HEATING CONDITIONS

Yield
temperature,

%?

Rupture
temperature,

9

Elongation
in 2 inches,
percent

Stress,
ksi

Temperature
rate, %?/sec

1,668
(a)
(a)

0.2
.2
.2

2
2

20

92
93

120

1,720
1,710
1,735

(b)

23
14

(:;
3320.0 1,795

1,885
(c)

31
36
282,000

2,010 32

0.2
.4

2
2

20
91

1,540 1,

1,

1,

1,

1,

1,

2
6
6
8

22
26

1,575
1,607
1.62040.0

1;687
1,727

1,460
1,519
1,6u2
1,659

0.2
2

20
92

1,500
1,580
1,655
1,747

3
4
4

10

60.0

I
1

I

1,334
1,405
1,492
1,553

1,402
I, 462
1,525
I-, 605

0.2
2

20

93

2
2
2
4

8Q.O

(a)Strain gages failed.

(b)No ruptie .
(c)

Thermocouple failed before rupture.
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TABLE Iv

TRE.RMKGEXPANSION OF INCONEL X SHEET

Temperature

II

Thermal
Coefficient of

range, % thermal expansionstrain
per ~

80 to 200
80 to 400
80 to 600
8oto 800

80 to 1,000

80 to l,2cKl
80 to 1,400
80 to 1,600
80 to 1,800

0. Ooogl
.00249
.00409
.00576
.00749
.00934
.olJ-44
.01385
.01692

7.58 X 10-6
7.78
7.86
8.00
8.14
8.34
8.67
9.11
9.84

NACA TN 4063
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(a) Stress-strain
test specimen.

(b) Rapid-heating
test specimen.

Figure l.- Stress-strain and rapid-heating tensile test specimens. All
dimensions are in inches.
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Figure 5.- Strain-temperature curves for Inconel X sheet for temperature
rates of 0.2° F to 93° F per second for various stresses.
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Figure 7.- Tensile yield stress of Inconel X sheet for rapid-heating
tests from 0.2° ~ to 100° F per second and for stress-strain tests
after l/2-hour exposure for a strain rate of 0.002 per minute.
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F@.rre 8.- Tensile rupture stress of Inconel X sheet for rapid-heating
tests from 0.2° F to 100° F per second and tensile ultimate stress
for stress-strain tests after l/2-hour exposure for a strain rate of
0.002 per minute.
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Figure 9.- Master yield-stress curve for Inconel X sheet using the

temperature-rate parameter
Ty - 2600

(
The yield temperature

log h - 15” %
is in OF and the temperature rate h is in %’ per second.)
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